As a data scientist, you often work with a dataset with different categories, and sometimes you need to find the mean values of rows. The colMeans() method returns the mean for the specified columns for the data frame, matrix, or arrays.

**rowMeans in R**

The **rowMeans()** is a built-in **R function** that calculates the mean of each row of a matrix or array. The **rowMeans()** method returns the mean for the specified rows for the data frame, matrix, or arrays.

The **row****Means()** function is very useful when you want to find the mean values rows. But what is the rowMeans() function, and how to use it with numeric matrix, array, data frame, and dataset? Let’s find out in detail.

**Syntax**

`rowMeans(x, na.rm = FALSE, dims = 1)`

**Parameters**

**x: **It is an array of two or more dimensions, containing numeric, complex, integer, or logical values, or a numeric data frame.

**dims**: It is an integer: Which dimensions are regarded as ‘**columns**’ to sum over. It is over dimensions 1:dims.

**na.rm:** It is a logical argument. If **TRUE**, NA values are ignored.

**Example**

Let’s create a Matrix using the matrix() function and calculate the mean of rows of the matrix.

```
rv <- rep(1:4)
mtrx <- matrix(rv, 2, 2)
mtrx
cat("The mean of rows is: ", "\n")
rowMeans(mtrx)
```

**Output**

```
[,1] [,2]
[1,] 1 3
[2,] 2 4
The mean of rows is:
[1] 2 3
```

The **rep**() **function** replicates numeric values, or text, or the values of a vector for a specific number of times.

The **matrix()** function will create a **2 X 2** matrix.

The mean of first row values is 1, 3 cause **1 + 3 = 4** and **4 / 2 = 2** and same for the second column whose output is 3.

**Calculate the mean of rows of the array in R**

To create an array in R, use the array() function. Let’s create an array and use the **rowMeans()** function to calculate the **mean** of rows of the array.

```
arr <- array(1:4, c(2, 2, 2))
arr
cat("The mean of rows is: ", "\n")
rowMeans(arr)
```

**Output**

```
, , 1
[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
[,1] [,2]
[1,] 1 3
[2,] 2 4
The mean of rows is:
[1] 2 3
```

**Calculate the mean of rows of a data frame in R**

To create a data frame in R, use the data.frame() function. To calculate the mean of rows of the data frame, use the **rowMeans()** function.

```
x <- c(2:4)
y <- c(2:4 * 2)
z <- c(2:4 * 3)
w <- c(2:4 * 4)
df <- data.frame(x, y, z, w)
cat("The mean of rows of df is: ", "\n")
rowMeans(df)
```

**Output**

```
x y z w
1 2 4 6 8
2 3 6 9 12
3 4 8 12 16
The mean of rows of df is:
[1] 5.0 7.5 10.0
```

**Calculate the mean of rows of a data set in R**

You can calculate the mean of rows of the dataset in R using the **rowMeans()** function. We will use the **USArrests **dataset.

`rowMeans(USArrests)`

**Output**

**Handling NA Values (na.rm) in rowMeans() function**

One of the most regular issues of the** rowMeans()** function is **NAs** (i.e., missing values) in the data.

Let’s see what happens when we apply our functions to data with missing values.

```
x <- c(1, 2, NA, 3)
y <- c(NA, 4, 5, 6)
z <- c(7, NA, 8, 9)
w <- c(10, 11, NA, 13)
df <- data.frame(x, y, z, w)
df
cat("The mean of rows of df is: ", "\n")
rowMeans(df)
```

**Output**

** x y z w**
**1** 1 NA 7 10
**2** 2 4 NA 11
**3** NA 5 8 NA
**4** 3 6 9 13
The mean of rows of df is:
[1] NA NA NA 7.75

You can see that we got all the **NAs** in the output because every column contains one **NA**. So, it will return **NA** in the output.

But no worries, there is an easy solution. First, we have to add **na.rm = TRUE** within our functions.

```
x <- c(1, 2, NA, 3)
y <- c(NA, 4, 5, 6)
z <- c(7, NA, 8, 9)
w <- c(10, 11, NA, 13)
df <- data.frame(x, y, z, w)
cat("The mean of rows of df is: ", "\n")
rowMeans(df, na.rm = TRUE)
```

**Output**

```
The mean of rows of df is:
[1] 6.000000 5.666667 6.500000 7.750000
```

As you can see that it ignored the **NA** values and calculate the mean of the remaining column values. Please note that the handling of missing values is a research topic by itself. Just ignoring **NA** values is usually not the best idea.

That is it for the **rowMeans() function in the R** tutorial.

**See also**

Calculate the square of Number in R

Krunal Lathiya is an Information Technology Engineer by education and web developer by profession. He has worked with many back-end platforms, including Node.js, PHP, and Python. In addition, Krunal has excellent knowledge of Data Science and Machine Learning, and he is an expert in R Language. Krunal has written many programming blogs, which showcases his vast expertise in this field.