R Advanced

How to Remove NA Values from Data Frame in R

Here are four different ways for different scenarios to remove NA values from a data frame:

  1. Use na.omit()
  2. Use complete.cases()
  3. Use is.na() with Subsetting
  4. Tidyverse approach

NA values are missing values. They are somehow absent from a data frame. Before creating a model based on a data frame, we need to clean the data frame of missing values, which depends on different scenarios.

Here is the sample data frame:

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

Method 1: Using na.omit()

The main operation of the na.omit() function is to remove all the rows containing any NA values from a data frame.

df <- data.frame(
 name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
 score = c(85, 90, 78, 92, 92, NA),
 subject = c("Math", "Math", NA, "History", "Biology", "Science"),
 grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values
df_without_na <- na.omit(df)

print(df_without_na)

Output

The above output figure shows that rows 3, 5, and 6 have been removed because they all contain at least one NA value.

Method 2: Using complete.cases()

The complete.cases() function provides flexibility: You can either remove all the rows that contain NA values or remove rows with NA in specific columns.

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values
df_clean <- df[complete.cases(df), ]

print(df_clean)

Output

You can use the complete.cases() on selected columns like this:

Let’s remove NAs based on columns “name” and “grade”.

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values
df_clean_cols <- df[complete.cases(df[, c("name", "grade")]), ]

print(df_clean_cols)

Output

The “subject” column also has an NA value, but we did not specify that, so it is in the output.

Method 3: Use is.na() with Subsetting

Subsetting is a process where you apply specific conditions to a data frame and select the rows based on the outcome of those conditions. It is like selecting rows based on your filter.

You can subset rows where specific columns are not missing (i.e., not NA).

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values from column "name"
df_clean_name <- df[!is.na(df$name), ]

print(df_clean_name)

Output

Method 4: Using tidyverse (dplyr/tidyr)

The tidyr::drop_na() function is designed to drop rows containing missing values.

Install the tidyr package and then load it using the library() function.

library(tidyr)

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing all rows with NA values
df_clean <- df %>% drop_na()

print(df_clean)

Output

You can also remove rows with NA based on specific columns using the drop_na() function.

library(tidyr)

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing all rows with NA values
df_clean_cols <- df %>% drop_na(name, grade)

print(df_clean_cols)

Output

That’s all!

Recent Posts

R paste() Function

The paste() function in R concatenates vectors after converting them to character. paste("Hello", 19, 21,…

7 days ago

paste0() Function in R

R paste0() function concatenates strings without any separator between them. It is a shorthand version…

1 week ago

How to Calculate Standard Error in R

Standard Error (SE) measures the variability or dispersion of the sample mean estimate of a…

2 weeks ago

R max() and min() Functions

max() The max() function in R finds the maximum value of a vector or data…

2 weeks ago

R as.Date() Function: Working with Dates

The as.Date() function in R converts various types of date and time objects or character…

2 weeks ago

R pnorm() Function [With Graphical Representation]

The pnorm() function in R calculates the cumulative density function (cdf) value of the normal…

3 weeks ago