R Advanced

How to Remove NA Values from Data Frame in R

Here are four different ways for different scenarios to remove NA values from a data frame:

  1. Use na.omit()
  2. Use complete.cases()
  3. Use is.na() with Subsetting
  4. Tidyverse approach

NA values are missing values. They are somehow absent from a data frame. Before creating a model based on a data frame, we need to clean the data frame of missing values, which depends on different scenarios.

Here is the sample data frame:

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

Method 1: Using na.omit()

The main operation of the na.omit() function is to remove all the rows containing any NA values from a data frame.

df <- data.frame(
 name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
 score = c(85, 90, 78, 92, 92, NA),
 subject = c("Math", "Math", NA, "History", "Biology", "Science"),
 grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values
df_without_na <- na.omit(df)

print(df_without_na)

Output

The above output figure shows that rows 3, 5, and 6 have been removed because they all contain at least one NA value.

Method 2: Using complete.cases()

The complete.cases() function provides flexibility: You can either remove all the rows that contain NA values or remove rows with NA in specific columns.

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values
df_clean <- df[complete.cases(df), ]

print(df_clean)

Output

You can use the complete.cases() on selected columns like this:

Let’s remove NAs based on columns “name” and “grade”.

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values
df_clean_cols <- df[complete.cases(df[, c("name", "grade")]), ]

print(df_clean_cols)

Output

The “subject” column also has an NA value, but we did not specify that, so it is in the output.

Method 3: Use is.na() with Subsetting

Subsetting is a process where you apply specific conditions to a data frame and select the rows based on the outcome of those conditions. It is like selecting rows based on your filter.

You can subset rows where specific columns are not missing (i.e., not NA).

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing rows with NA values from column "name"
df_clean_name <- df[!is.na(df$name), ]

print(df_clean_name)

Output

Method 4: Using tidyverse (dplyr/tidyr)

The tidyr::drop_na() function is designed to drop rows containing missing values.

Install the tidyr package and then load it using the library() function.

library(tidyr)

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing all rows with NA values
df_clean <- df %>% drop_na()

print(df_clean)

Output

You can also remove rows with NA based on specific columns using the drop_na() function.

library(tidyr)

df <- data.frame(
  name = c("Krunal", "Ankit", "Rushabh", "Dhaval", "Niva", NA),
  score = c(85, 90, 78, 92, 92, NA),
  subject = c("Math", "Math", NA, "History", "Biology", "Science"),
  grade = c("10th", "12th", "11th", "10th", NA, NA)
)

print(df)

# Removing all rows with NA values
df_clean_cols <- df %>% drop_na(name, grade)

print(df_clean_cols)

Output

That’s all!

Recent Posts

R scale(): Scaling and Centering of Matrix-like Objects

The scale() function in R centers (subtracting the mean) and/or scales (dividing by the standard…

2 weeks ago

file.rename(): Renaming Single and Multiple Files in R

To rename a file in R, you can use the file.rename() function. It renames a…

3 weeks ago

R prop.table() Function

The prop.table() function in R calculates the proportion or relative frequency of values in a…

3 weeks ago

exp() Function: Calculate Exponential of a Number in R

The exp() is a built-in function that calculates the exponential of its input, raising Euler's…

3 weeks ago

R split() Function: Splitting a Data

The split() function divides the input data into groups based on some criteria, typically specified…

4 weeks ago

colMeans(): Calculating the Mean of Columns in R Data Frame

The colMeans() function in R calculates the arithmetic mean of columns in a numeric matrix,…

1 month ago