R dplyr

R distinct() Function from dplyr

The dplyr::distinct() function in R removes duplicate rows from a data frame or tibble and keeps unique rows. You can provide additional arguments, like columns, to check for duplicates in those specific columns.

Syntax

distinct(.data, ..., .keep_all = FALSE)

Parameters

Argument Description
.data It is an input data frame or tibble from which to remove duplicate rows.
You can define specific column names for uniqueness.
.keep_all It is a logical value. If TRUE, it keeps all variables in the output. If FALSE, only the variables used to determine distinct rows are retained.

Removing duplicates across all columns

If you don’t pass any argument, it will remove duplicates across all columns from a data frame or tibble.

With data frame

library(dplyr)

df <- data.frame(
  x = c(1, 1, 2, 2),
  y = c("a", "a", "b", "b"),
  z = c(TRUE, TRUE, FALSE, FALSE)
)

df %>% distinct()

Output

   x  y  z
1  1  a  TRUE
2  2  b  FALSE

With tibble

library(dplyr)

df <- tibble(
  x = c(1, 1, 2, 2),
  y = c("a", "a", "b", "b"),
  z = c(TRUE, TRUE, FALSE, FALSE)
)

df %>% distinct()

Output

Uniqueness based on specific columns

df <- tibble(
  x = c(1, 1, 2, 2),
  y = c("a", "a", "b", "b"),
  z = c(TRUE, TRUE, FALSE, FALSE)
)

df %>% distinct(x, .keep_all = TRUE)

Output

In this code example, we removed duplicates based on the x column and kept all other columns in the result. Since x has two unique values, the result will have two rows.

Distinct rows based on a specific column

library(dplyr)

df <- data.frame(
  x = c(1, 1, 2, 2, 3, 3),
  y = c("a", "a", "b", "b", "c", "c"),
  z = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE)
)

df %>% distinct(z)

Output

     z
1   TRUE
2   FALSE

In this code example, we checked for duplicates based on a combination z column, and only unique values of the z column have been returned.

Keeping All Variables

If you want to retain all columns while removing duplicates based on specific columns, you should pass “.keep_all = TRUE”.

library(dplyr)

df <- data.frame(
  x = c(1, 1, 2, 2, 3, 3),
  y = c("a", "a", "b", "b", "c", "c"),
  z = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE)
)

df %>% distinct(z, .keep_all = TRUE)

Output

   x  y   z
1  1  a  TRUE
2  2  b  FALSE

If you want faster results, you should use .keep_all = FALSE (default).

Handling NA Values

If you have duplicate NA values, they will also be removed from the final output.

library(dplyr)

df <- data.frame(
  x = c(1, 1, NA, 2, 3, NA),
  y = c("a", "a", NA, "b", "c", NA),
  z = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE)
)

df %>% distinct()

Output

   x  y    z
1  1  a    TRUE
2  NA <NA> FALSE
3  2  b    FALSE
4  3  c    TRUE

With grouped data

Grouping has no effect on distinct(); it operates on the entire data frame.

To find unique values within groups, you can combine with group_by() and summarize() functions.

library(dplyr)

df <- data.frame(
  x = c(1, 1, 2, 2, 3, 3),
  y = c("a", "a", "b", "b", "c", "c"),
  z = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE)
)

df %>%
  group_by(x) %>%
  summarize(unique_id = first(x))

Output

That’s all!

Recent Posts

cbind() Function: Binding R Objects by Columns

R cbind (column bind) is a function that combines specified vectors, matrices, or data frames…

1 week ago

rbind() Function: Binding Rows in R

The rbind() function combines R objects, such as vectors, matrices, or data frames, by rows.…

1 week ago

as.numeric(): Converting to Numeric Values in R

The as.numeric() function in R converts valid non-numeric data into numeric data. What do I…

2 weeks ago

Calculating Natural Log using log() Function in R

The log() function calculates the natural logarithm (base e) of a numeric vector. By default,…

3 weeks ago

Dollar Sign ($ Operator) in R

In R, you can use the dollar sign ($ operator)  to access elements (columns) of…

1 month ago

Calculating Absolute Value using abs() Function in R

The abs() function calculates the absolute value of a numeric input, returning a non-negative (only…

1 month ago